Middle convolution of Fuchsian systems and the construction of rigid differential systems

نویسندگان

  • Michael Dettweiler
  • Stefan Reiter
چکیده

In [6], a purely algebraic analogon of Katz’ middle convolution functor (see [10]) is given. In this paper, we find an explicit Riemann-Hilbert correspondence for this functor. This leads to a construction algorithm for differential systems which correspond to rigid local systems on the punctured affine line via the Riemann-Hilbert correspondence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the middle convolution

In [9], a purely algebraic analogon of Katz’ middle convolution functor (see [12]) is given. It is denoted by MCλ. In this paper, we present a cohomological interpretation of MCλ and find an explicit RiemannHilbert correspondence for this functor. This leads to an algorithm for the construction of Fuchsian systems corresponding to irreducible rigid local systems under the Riemann-Hilbert corres...

متن کامل

On globally nilpotent differential equations

In a previous work of the authors, a middle convolution operation on the category of Fuchsian differential systems was introduced. In this note we show that the middle convolution of Fuchsian systems preserves the property of global nilpotence. This leads to a globally nilpotent Fuchsian system of rank two which does not belong to the known classes of globally nilpotent rank two systems. Moreov...

متن کامل

Fractional Calculus of Weyl Algebra and Fuchsian Differential Equations

We give a unified interpretation of confluences, contiguity relations and Katz’s middle convolutions for linear ordinary differential equations with polynomial coefficients and their generalization to partial differential equations. The integral representations and series expansions of their solutions are also within our interpretation. As an application to Fuchsian differential equations on th...

متن کامل

Classification of Fuchsian Systems and Their Connection Problem

Middle convolutions introduced by Katz [Kz] and extensions and restrictions introduced by Yokoyama [Yo] give interesting operations on Fuchsian systems on the Riemann sphere. They are invertible and under them the solutions of the systems are transformed by integral transformations and the correspondence of their monodromy groups is concretely described (cf. [Ko4], [Ha], [HY], [DR2], [HF], [O2]...

متن کامل

Katz’s Middle Convolution and Yokoyama’s Extending Operation

We give a concrete relation between Katz’s middle convolution and Yokoyama’s extension and show the equivalence of both algorithms using these operations for the reduction of Fuchsian systems on the Riemann sphere.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004